| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816 | 
							- 'use strict';
 
- Object.defineProperty(exports, '__esModule', {
 
-   value: true
 
- });
 
- exports.default = diffSequence;
 
- /**
 
-  * Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
 
-  *
 
-  * This source code is licensed under the MIT license found in the
 
-  * LICENSE file in the root directory of this source tree.
 
-  *
 
-  */
 
- // This diff-sequences package implements the linear space variation in
 
- // An O(ND) Difference Algorithm and Its Variations by Eugene W. Myers
 
- // Relationship in notation between Myers paper and this package:
 
- // A is a
 
- // N is aLength, aEnd - aStart, and so on
 
- // x is aIndex, aFirst, aLast, and so on
 
- // B is b
 
- // M is bLength, bEnd - bStart, and so on
 
- // y is bIndex, bFirst, bLast, and so on
 
- // Δ = N - M is negative of baDeltaLength = bLength - aLength
 
- // D is d
 
- // k is kF
 
- // k + Δ is kF = kR - baDeltaLength
 
- // V is aIndexesF or aIndexesR (see comment below about Indexes type)
 
- // index intervals [1, N] and [1, M] are [0, aLength) and [0, bLength)
 
- // starting point in forward direction (0, 0) is (-1, -1)
 
- // starting point in reverse direction (N + 1, M + 1) is (aLength, bLength)
 
- // The “edit graph” for sequences a and b corresponds to items:
 
- // in a on the horizontal axis
 
- // in b on the vertical axis
 
- //
 
- // Given a-coordinate of a point in a diagonal, you can compute b-coordinate.
 
- //
 
- // Forward diagonals kF:
 
- // zero diagonal intersects top left corner
 
- // positive diagonals intersect top edge
 
- // negative diagonals insersect left edge
 
- //
 
- // Reverse diagonals kR:
 
- // zero diagonal intersects bottom right corner
 
- // positive diagonals intersect right edge
 
- // negative diagonals intersect bottom edge
 
- // The graph contains a directed acyclic graph of edges:
 
- // horizontal: delete an item from a
 
- // vertical: insert an item from b
 
- // diagonal: common item in a and b
 
- //
 
- // The algorithm solves dual problems in the graph analogy:
 
- // Find longest common subsequence: path with maximum number of diagonal edges
 
- // Find shortest edit script: path with minimum number of non-diagonal edges
 
- // Input callback function compares items at indexes in the sequences.
 
- // Output callback function receives the number of adjacent items
 
- // and starting indexes of each common subsequence.
 
- // Either original functions or wrapped to swap indexes if graph is transposed.
 
- // Indexes in sequence a of last point of forward or reverse paths in graph.
 
- // Myers algorithm indexes by diagonal k which for negative is bad deopt in V8.
 
- // This package indexes by iF and iR which are greater than or equal to zero.
 
- // and also updates the index arrays in place to cut memory in half.
 
- // kF = 2 * iF - d
 
- // kR = d - 2 * iR
 
- // Division of index intervals in sequences a and b at the middle change.
 
- // Invariant: intervals do not have common items at the start or end.
 
- const pkg = 'diff-sequences'; // for error messages
 
- const NOT_YET_SET = 0; // small int instead of undefined to avoid deopt in V8
 
- // Return the number of common items that follow in forward direction.
 
- // The length of what Myers paper calls a “snake” in a forward path.
 
- const countCommonItemsF = (aIndex, aEnd, bIndex, bEnd, isCommon) => {
 
-   let nCommon = 0;
 
-   while (aIndex < aEnd && bIndex < bEnd && isCommon(aIndex, bIndex)) {
 
-     aIndex += 1;
 
-     bIndex += 1;
 
-     nCommon += 1;
 
-   }
 
-   return nCommon;
 
- }; // Return the number of common items that precede in reverse direction.
 
- // The length of what Myers paper calls a “snake” in a reverse path.
 
- const countCommonItemsR = (aStart, aIndex, bStart, bIndex, isCommon) => {
 
-   let nCommon = 0;
 
-   while (aStart <= aIndex && bStart <= bIndex && isCommon(aIndex, bIndex)) {
 
-     aIndex -= 1;
 
-     bIndex -= 1;
 
-     nCommon += 1;
 
-   }
 
-   return nCommon;
 
- }; // A simple function to extend forward paths from (d - 1) to d changes
 
- // when forward and reverse paths cannot yet overlap.
 
- const extendPathsF = (
 
-   d,
 
-   aEnd,
 
-   bEnd,
 
-   bF,
 
-   isCommon,
 
-   aIndexesF,
 
-   iMaxF // return the value because optimization might decrease it
 
- ) => {
 
-   // Unroll the first iteration.
 
-   let iF = 0;
 
-   let kF = -d; // kF = 2 * iF - d
 
-   let aFirst = aIndexesF[iF]; // in first iteration always insert
 
-   let aIndexPrev1 = aFirst; // prev value of [iF - 1] in next iteration
 
-   aIndexesF[iF] += countCommonItemsF(
 
-     aFirst + 1,
 
-     aEnd,
 
-     bF + aFirst - kF + 1,
 
-     bEnd,
 
-     isCommon
 
-   ); // Optimization: skip diagonals in which paths cannot ever overlap.
 
-   const nF = d < iMaxF ? d : iMaxF; // The diagonals kF are odd when d is odd and even when d is even.
 
-   for (iF += 1, kF += 2; iF <= nF; iF += 1, kF += 2) {
 
-     // To get first point of path segment, move one change in forward direction
 
-     // from last point of previous path segment in an adjacent diagonal.
 
-     // In last possible iteration when iF === d and kF === d always delete.
 
-     if (iF !== d && aIndexPrev1 < aIndexesF[iF]) {
 
-       aFirst = aIndexesF[iF]; // vertical to insert from b
 
-     } else {
 
-       aFirst = aIndexPrev1 + 1; // horizontal to delete from a
 
-       if (aEnd <= aFirst) {
 
-         // Optimization: delete moved past right of graph.
 
-         return iF - 1;
 
-       }
 
-     } // To get last point of path segment, move along diagonal of common items.
 
-     aIndexPrev1 = aIndexesF[iF];
 
-     aIndexesF[iF] =
 
-       aFirst +
 
-       countCommonItemsF(aFirst + 1, aEnd, bF + aFirst - kF + 1, bEnd, isCommon);
 
-   }
 
-   return iMaxF;
 
- }; // A simple function to extend reverse paths from (d - 1) to d changes
 
- // when reverse and forward paths cannot yet overlap.
 
- const extendPathsR = (
 
-   d,
 
-   aStart,
 
-   bStart,
 
-   bR,
 
-   isCommon,
 
-   aIndexesR,
 
-   iMaxR // return the value because optimization might decrease it
 
- ) => {
 
-   // Unroll the first iteration.
 
-   let iR = 0;
 
-   let kR = d; // kR = d - 2 * iR
 
-   let aFirst = aIndexesR[iR]; // in first iteration always insert
 
-   let aIndexPrev1 = aFirst; // prev value of [iR - 1] in next iteration
 
-   aIndexesR[iR] -= countCommonItemsR(
 
-     aStart,
 
-     aFirst - 1,
 
-     bStart,
 
-     bR + aFirst - kR - 1,
 
-     isCommon
 
-   ); // Optimization: skip diagonals in which paths cannot ever overlap.
 
-   const nR = d < iMaxR ? d : iMaxR; // The diagonals kR are odd when d is odd and even when d is even.
 
-   for (iR += 1, kR -= 2; iR <= nR; iR += 1, kR -= 2) {
 
-     // To get first point of path segment, move one change in reverse direction
 
-     // from last point of previous path segment in an adjacent diagonal.
 
-     // In last possible iteration when iR === d and kR === -d always delete.
 
-     if (iR !== d && aIndexesR[iR] < aIndexPrev1) {
 
-       aFirst = aIndexesR[iR]; // vertical to insert from b
 
-     } else {
 
-       aFirst = aIndexPrev1 - 1; // horizontal to delete from a
 
-       if (aFirst < aStart) {
 
-         // Optimization: delete moved past left of graph.
 
-         return iR - 1;
 
-       }
 
-     } // To get last point of path segment, move along diagonal of common items.
 
-     aIndexPrev1 = aIndexesR[iR];
 
-     aIndexesR[iR] =
 
-       aFirst -
 
-       countCommonItemsR(
 
-         aStart,
 
-         aFirst - 1,
 
-         bStart,
 
-         bR + aFirst - kR - 1,
 
-         isCommon
 
-       );
 
-   }
 
-   return iMaxR;
 
- }; // A complete function to extend forward paths from (d - 1) to d changes.
 
- // Return true if a path overlaps reverse path of (d - 1) changes in its diagonal.
 
- const extendOverlappablePathsF = (
 
-   d,
 
-   aStart,
 
-   aEnd,
 
-   bStart,
 
-   bEnd,
 
-   isCommon,
 
-   aIndexesF,
 
-   iMaxF,
 
-   aIndexesR,
 
-   iMaxR,
 
-   division // update prop values if return true
 
- ) => {
 
-   const bF = bStart - aStart; // bIndex = bF + aIndex - kF
 
-   const aLength = aEnd - aStart;
 
-   const bLength = bEnd - bStart;
 
-   const baDeltaLength = bLength - aLength; // kF = kR - baDeltaLength
 
-   // Range of diagonals in which forward and reverse paths might overlap.
 
-   const kMinOverlapF = -baDeltaLength - (d - 1); // -(d - 1) <= kR
 
-   const kMaxOverlapF = -baDeltaLength + (d - 1); // kR <= (d - 1)
 
-   let aIndexPrev1 = NOT_YET_SET; // prev value of [iF - 1] in next iteration
 
-   // Optimization: skip diagonals in which paths cannot ever overlap.
 
-   const nF = d < iMaxF ? d : iMaxF; // The diagonals kF = 2 * iF - d are odd when d is odd and even when d is even.
 
-   for (let iF = 0, kF = -d; iF <= nF; iF += 1, kF += 2) {
 
-     // To get first point of path segment, move one change in forward direction
 
-     // from last point of previous path segment in an adjacent diagonal.
 
-     // In first iteration when iF === 0 and kF === -d always insert.
 
-     // In last possible iteration when iF === d and kF === d always delete.
 
-     const insert = iF === 0 || (iF !== d && aIndexPrev1 < aIndexesF[iF]);
 
-     const aLastPrev = insert ? aIndexesF[iF] : aIndexPrev1;
 
-     const aFirst = insert
 
-       ? aLastPrev // vertical to insert from b
 
-       : aLastPrev + 1; // horizontal to delete from a
 
-     // To get last point of path segment, move along diagonal of common items.
 
-     const bFirst = bF + aFirst - kF;
 
-     const nCommonF = countCommonItemsF(
 
-       aFirst + 1,
 
-       aEnd,
 
-       bFirst + 1,
 
-       bEnd,
 
-       isCommon
 
-     );
 
-     const aLast = aFirst + nCommonF;
 
-     aIndexPrev1 = aIndexesF[iF];
 
-     aIndexesF[iF] = aLast;
 
-     if (kMinOverlapF <= kF && kF <= kMaxOverlapF) {
 
-       // Solve for iR of reverse path with (d - 1) changes in diagonal kF:
 
-       // kR = kF + baDeltaLength
 
-       // kR = (d - 1) - 2 * iR
 
-       const iR = (d - 1 - (kF + baDeltaLength)) / 2; // If this forward path overlaps the reverse path in this diagonal,
 
-       // then this is the middle change of the index intervals.
 
-       if (iR <= iMaxR && aIndexesR[iR] - 1 <= aLast) {
 
-         // Unlike the Myers algorithm which finds only the middle “snake”
 
-         // this package can find two common subsequences per division.
 
-         // Last point of previous path segment is on an adjacent diagonal.
 
-         const bLastPrev = bF + aLastPrev - (insert ? kF + 1 : kF - 1); // Because of invariant that intervals preceding the middle change
 
-         // cannot have common items at the end,
 
-         // move in reverse direction along a diagonal of common items.
 
-         const nCommonR = countCommonItemsR(
 
-           aStart,
 
-           aLastPrev,
 
-           bStart,
 
-           bLastPrev,
 
-           isCommon
 
-         );
 
-         const aIndexPrevFirst = aLastPrev - nCommonR;
 
-         const bIndexPrevFirst = bLastPrev - nCommonR;
 
-         const aEndPreceding = aIndexPrevFirst + 1;
 
-         const bEndPreceding = bIndexPrevFirst + 1;
 
-         division.nChangePreceding = d - 1;
 
-         if (d - 1 === aEndPreceding + bEndPreceding - aStart - bStart) {
 
-           // Optimization: number of preceding changes in forward direction
 
-           // is equal to number of items in preceding interval,
 
-           // therefore it cannot contain any common items.
 
-           division.aEndPreceding = aStart;
 
-           division.bEndPreceding = bStart;
 
-         } else {
 
-           division.aEndPreceding = aEndPreceding;
 
-           division.bEndPreceding = bEndPreceding;
 
-         }
 
-         division.nCommonPreceding = nCommonR;
 
-         if (nCommonR !== 0) {
 
-           division.aCommonPreceding = aEndPreceding;
 
-           division.bCommonPreceding = bEndPreceding;
 
-         }
 
-         division.nCommonFollowing = nCommonF;
 
-         if (nCommonF !== 0) {
 
-           division.aCommonFollowing = aFirst + 1;
 
-           division.bCommonFollowing = bFirst + 1;
 
-         }
 
-         const aStartFollowing = aLast + 1;
 
-         const bStartFollowing = bFirst + nCommonF + 1;
 
-         division.nChangeFollowing = d - 1;
 
-         if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
 
-           // Optimization: number of changes in reverse direction
 
-           // is equal to number of items in following interval,
 
-           // therefore it cannot contain any common items.
 
-           division.aStartFollowing = aEnd;
 
-           division.bStartFollowing = bEnd;
 
-         } else {
 
-           division.aStartFollowing = aStartFollowing;
 
-           division.bStartFollowing = bStartFollowing;
 
-         }
 
-         return true;
 
-       }
 
-     }
 
-   }
 
-   return false;
 
- }; // A complete function to extend reverse paths from (d - 1) to d changes.
 
- // Return true if a path overlaps forward path of d changes in its diagonal.
 
- const extendOverlappablePathsR = (
 
-   d,
 
-   aStart,
 
-   aEnd,
 
-   bStart,
 
-   bEnd,
 
-   isCommon,
 
-   aIndexesF,
 
-   iMaxF,
 
-   aIndexesR,
 
-   iMaxR,
 
-   division // update prop values if return true
 
- ) => {
 
-   const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
 
-   const aLength = aEnd - aStart;
 
-   const bLength = bEnd - bStart;
 
-   const baDeltaLength = bLength - aLength; // kR = kF + baDeltaLength
 
-   // Range of diagonals in which forward and reverse paths might overlap.
 
-   const kMinOverlapR = baDeltaLength - d; // -d <= kF
 
-   const kMaxOverlapR = baDeltaLength + d; // kF <= d
 
-   let aIndexPrev1 = NOT_YET_SET; // prev value of [iR - 1] in next iteration
 
-   // Optimization: skip diagonals in which paths cannot ever overlap.
 
-   const nR = d < iMaxR ? d : iMaxR; // The diagonals kR = d - 2 * iR are odd when d is odd and even when d is even.
 
-   for (let iR = 0, kR = d; iR <= nR; iR += 1, kR -= 2) {
 
-     // To get first point of path segment, move one change in reverse direction
 
-     // from last point of previous path segment in an adjacent diagonal.
 
-     // In first iteration when iR === 0 and kR === d always insert.
 
-     // In last possible iteration when iR === d and kR === -d always delete.
 
-     const insert = iR === 0 || (iR !== d && aIndexesR[iR] < aIndexPrev1);
 
-     const aLastPrev = insert ? aIndexesR[iR] : aIndexPrev1;
 
-     const aFirst = insert
 
-       ? aLastPrev // vertical to insert from b
 
-       : aLastPrev - 1; // horizontal to delete from a
 
-     // To get last point of path segment, move along diagonal of common items.
 
-     const bFirst = bR + aFirst - kR;
 
-     const nCommonR = countCommonItemsR(
 
-       aStart,
 
-       aFirst - 1,
 
-       bStart,
 
-       bFirst - 1,
 
-       isCommon
 
-     );
 
-     const aLast = aFirst - nCommonR;
 
-     aIndexPrev1 = aIndexesR[iR];
 
-     aIndexesR[iR] = aLast;
 
-     if (kMinOverlapR <= kR && kR <= kMaxOverlapR) {
 
-       // Solve for iF of forward path with d changes in diagonal kR:
 
-       // kF = kR - baDeltaLength
 
-       // kF = 2 * iF - d
 
-       const iF = (d + (kR - baDeltaLength)) / 2; // If this reverse path overlaps the forward path in this diagonal,
 
-       // then this is a middle change of the index intervals.
 
-       if (iF <= iMaxF && aLast - 1 <= aIndexesF[iF]) {
 
-         const bLast = bFirst - nCommonR;
 
-         division.nChangePreceding = d;
 
-         if (d === aLast + bLast - aStart - bStart) {
 
-           // Optimization: number of changes in reverse direction
 
-           // is equal to number of items in preceding interval,
 
-           // therefore it cannot contain any common items.
 
-           division.aEndPreceding = aStart;
 
-           division.bEndPreceding = bStart;
 
-         } else {
 
-           division.aEndPreceding = aLast;
 
-           division.bEndPreceding = bLast;
 
-         }
 
-         division.nCommonPreceding = nCommonR;
 
-         if (nCommonR !== 0) {
 
-           // The last point of reverse path segment is start of common subsequence.
 
-           division.aCommonPreceding = aLast;
 
-           division.bCommonPreceding = bLast;
 
-         }
 
-         division.nChangeFollowing = d - 1;
 
-         if (d === 1) {
 
-           // There is no previous path segment.
 
-           division.nCommonFollowing = 0;
 
-           division.aStartFollowing = aEnd;
 
-           division.bStartFollowing = bEnd;
 
-         } else {
 
-           // Unlike the Myers algorithm which finds only the middle “snake”
 
-           // this package can find two common subsequences per division.
 
-           // Last point of previous path segment is on an adjacent diagonal.
 
-           const bLastPrev = bR + aLastPrev - (insert ? kR - 1 : kR + 1); // Because of invariant that intervals following the middle change
 
-           // cannot have common items at the start,
 
-           // move in forward direction along a diagonal of common items.
 
-           const nCommonF = countCommonItemsF(
 
-             aLastPrev,
 
-             aEnd,
 
-             bLastPrev,
 
-             bEnd,
 
-             isCommon
 
-           );
 
-           division.nCommonFollowing = nCommonF;
 
-           if (nCommonF !== 0) {
 
-             // The last point of reverse path segment is start of common subsequence.
 
-             division.aCommonFollowing = aLastPrev;
 
-             division.bCommonFollowing = bLastPrev;
 
-           }
 
-           const aStartFollowing = aLastPrev + nCommonF; // aFirstPrev
 
-           const bStartFollowing = bLastPrev + nCommonF; // bFirstPrev
 
-           if (d - 1 === aEnd + bEnd - aStartFollowing - bStartFollowing) {
 
-             // Optimization: number of changes in forward direction
 
-             // is equal to number of items in following interval,
 
-             // therefore it cannot contain any common items.
 
-             division.aStartFollowing = aEnd;
 
-             division.bStartFollowing = bEnd;
 
-           } else {
 
-             division.aStartFollowing = aStartFollowing;
 
-             division.bStartFollowing = bStartFollowing;
 
-           }
 
-         }
 
-         return true;
 
-       }
 
-     }
 
-   }
 
-   return false;
 
- }; // Given index intervals and input function to compare items at indexes,
 
- // divide at the middle change.
 
- //
 
- // DO NOT CALL if start === end, because interval cannot contain common items
 
- // and because this function will throw the “no overlap” error.
 
- const divide = (
 
-   nChange,
 
-   aStart,
 
-   aEnd,
 
-   bStart,
 
-   bEnd,
 
-   isCommon,
 
-   aIndexesF,
 
-   aIndexesR,
 
-   division // output
 
- ) => {
 
-   const bF = bStart - aStart; // bIndex = bF + aIndex - kF
 
-   const bR = bEnd - aEnd; // bIndex = bR + aIndex - kR
 
-   const aLength = aEnd - aStart;
 
-   const bLength = bEnd - bStart; // Because graph has square or portrait orientation,
 
-   // length difference is minimum number of items to insert from b.
 
-   // Corresponding forward and reverse diagonals in graph
 
-   // depend on length difference of the sequences:
 
-   // kF = kR - baDeltaLength
 
-   // kR = kF + baDeltaLength
 
-   const baDeltaLength = bLength - aLength; // Optimization: max diagonal in graph intersects corner of shorter side.
 
-   let iMaxF = aLength;
 
-   let iMaxR = aLength; // Initialize no changes yet in forward or reverse direction:
 
-   aIndexesF[0] = aStart - 1; // at open start of interval, outside closed start
 
-   aIndexesR[0] = aEnd; // at open end of interval
 
-   if (baDeltaLength % 2 === 0) {
 
-     // The number of changes in paths is 2 * d if length difference is even.
 
-     const dMin = (nChange || baDeltaLength) / 2;
 
-     const dMax = (aLength + bLength) / 2;
 
-     for (let d = 1; d <= dMax; d += 1) {
 
-       iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 
-       if (d < dMin) {
 
-         iMaxR = extendPathsR(d, aStart, bStart, bR, isCommon, aIndexesR, iMaxR);
 
-       } else if (
 
-         // If a reverse path overlaps a forward path in the same diagonal,
 
-         // return a division of the index intervals at the middle change.
 
-         extendOverlappablePathsR(
 
-           d,
 
-           aStart,
 
-           aEnd,
 
-           bStart,
 
-           bEnd,
 
-           isCommon,
 
-           aIndexesF,
 
-           iMaxF,
 
-           aIndexesR,
 
-           iMaxR,
 
-           division
 
-         )
 
-       ) {
 
-         return;
 
-       }
 
-     }
 
-   } else {
 
-     // The number of changes in paths is 2 * d - 1 if length difference is odd.
 
-     const dMin = ((nChange || baDeltaLength) + 1) / 2;
 
-     const dMax = (aLength + bLength + 1) / 2; // Unroll first half iteration so loop extends the relevant pairs of paths.
 
-     // Because of invariant that intervals have no common items at start or end,
 
-     // and limitation not to call divide with empty intervals,
 
-     // therefore it cannot be called if a forward path with one change
 
-     // would overlap a reverse path with no changes, even if dMin === 1.
 
-     let d = 1;
 
-     iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 
-     for (d += 1; d <= dMax; d += 1) {
 
-       iMaxR = extendPathsR(
 
-         d - 1,
 
-         aStart,
 
-         bStart,
 
-         bR,
 
-         isCommon,
 
-         aIndexesR,
 
-         iMaxR
 
-       );
 
-       if (d < dMin) {
 
-         iMaxF = extendPathsF(d, aEnd, bEnd, bF, isCommon, aIndexesF, iMaxF);
 
-       } else if (
 
-         // If a forward path overlaps a reverse path in the same diagonal,
 
-         // return a division of the index intervals at the middle change.
 
-         extendOverlappablePathsF(
 
-           d,
 
-           aStart,
 
-           aEnd,
 
-           bStart,
 
-           bEnd,
 
-           isCommon,
 
-           aIndexesF,
 
-           iMaxF,
 
-           aIndexesR,
 
-           iMaxR,
 
-           division
 
-         )
 
-       ) {
 
-         return;
 
-       }
 
-     }
 
-   }
 
-   /* istanbul ignore next */
 
-   throw new Error(
 
-     `${pkg}: no overlap aStart=${aStart} aEnd=${aEnd} bStart=${bStart} bEnd=${bEnd}`
 
-   );
 
- }; // Given index intervals and input function to compare items at indexes,
 
- // return by output function the number of adjacent items and starting indexes
 
- // of each common subsequence. Divide and conquer with only linear space.
 
- //
 
- // The index intervals are half open [start, end) like array slice method.
 
- // DO NOT CALL if start === end, because interval cannot contain common items
 
- // and because divide function will throw the “no overlap” error.
 
- const findSubsequences = (
 
-   nChange,
 
-   aStart,
 
-   aEnd,
 
-   bStart,
 
-   bEnd,
 
-   transposed,
 
-   callbacks,
 
-   aIndexesF,
 
-   aIndexesR,
 
-   division // temporary memory, not input nor output
 
- ) => {
 
-   if (bEnd - bStart < aEnd - aStart) {
 
-     // Transpose graph so it has portrait instead of landscape orientation.
 
-     // Always compare shorter to longer sequence for consistency and optimization.
 
-     transposed = !transposed;
 
-     if (transposed && callbacks.length === 1) {
 
-       // Lazily wrap callback functions to swap args if graph is transposed.
 
-       const {foundSubsequence, isCommon} = callbacks[0];
 
-       callbacks[1] = {
 
-         foundSubsequence: (nCommon, bCommon, aCommon) => {
 
-           foundSubsequence(nCommon, aCommon, bCommon);
 
-         },
 
-         isCommon: (bIndex, aIndex) => isCommon(aIndex, bIndex)
 
-       };
 
-     }
 
-     const tStart = aStart;
 
-     const tEnd = aEnd;
 
-     aStart = bStart;
 
-     aEnd = bEnd;
 
-     bStart = tStart;
 
-     bEnd = tEnd;
 
-   }
 
-   const {foundSubsequence, isCommon} = callbacks[transposed ? 1 : 0]; // Divide the index intervals at the middle change.
 
-   divide(
 
-     nChange,
 
-     aStart,
 
-     aEnd,
 
-     bStart,
 
-     bEnd,
 
-     isCommon,
 
-     aIndexesF,
 
-     aIndexesR,
 
-     division
 
-   );
 
-   const {
 
-     nChangePreceding,
 
-     aEndPreceding,
 
-     bEndPreceding,
 
-     nCommonPreceding,
 
-     aCommonPreceding,
 
-     bCommonPreceding,
 
-     nCommonFollowing,
 
-     aCommonFollowing,
 
-     bCommonFollowing,
 
-     nChangeFollowing,
 
-     aStartFollowing,
 
-     bStartFollowing
 
-   } = division; // Unless either index interval is empty, they might contain common items.
 
-   if (aStart < aEndPreceding && bStart < bEndPreceding) {
 
-     // Recursely find and return common subsequences preceding the division.
 
-     findSubsequences(
 
-       nChangePreceding,
 
-       aStart,
 
-       aEndPreceding,
 
-       bStart,
 
-       bEndPreceding,
 
-       transposed,
 
-       callbacks,
 
-       aIndexesF,
 
-       aIndexesR,
 
-       division
 
-     );
 
-   } // Return common subsequences that are adjacent to the middle change.
 
-   if (nCommonPreceding !== 0) {
 
-     foundSubsequence(nCommonPreceding, aCommonPreceding, bCommonPreceding);
 
-   }
 
-   if (nCommonFollowing !== 0) {
 
-     foundSubsequence(nCommonFollowing, aCommonFollowing, bCommonFollowing);
 
-   } // Unless either index interval is empty, they might contain common items.
 
-   if (aStartFollowing < aEnd && bStartFollowing < bEnd) {
 
-     // Recursely find and return common subsequences following the division.
 
-     findSubsequences(
 
-       nChangeFollowing,
 
-       aStartFollowing,
 
-       aEnd,
 
-       bStartFollowing,
 
-       bEnd,
 
-       transposed,
 
-       callbacks,
 
-       aIndexesF,
 
-       aIndexesR,
 
-       division
 
-     );
 
-   }
 
- };
 
- const validateLength = (name, arg) => {
 
-   if (typeof arg !== 'number') {
 
-     throw new TypeError(`${pkg}: ${name} typeof ${typeof arg} is not a number`);
 
-   }
 
-   if (!Number.isSafeInteger(arg)) {
 
-     throw new RangeError(`${pkg}: ${name} value ${arg} is not a safe integer`);
 
-   }
 
-   if (arg < 0) {
 
-     throw new RangeError(`${pkg}: ${name} value ${arg} is a negative integer`);
 
-   }
 
- };
 
- const validateCallback = (name, arg) => {
 
-   const type = typeof arg;
 
-   if (type !== 'function') {
 
-     throw new TypeError(`${pkg}: ${name} typeof ${type} is not a function`);
 
-   }
 
- }; // Compare items in two sequences to find a longest common subsequence.
 
- // Given lengths of sequences and input function to compare items at indexes,
 
- // return by output function the number of adjacent items and starting indexes
 
- // of each common subsequence.
 
- function diffSequence(aLength, bLength, isCommon, foundSubsequence) {
 
-   validateLength('aLength', aLength);
 
-   validateLength('bLength', bLength);
 
-   validateCallback('isCommon', isCommon);
 
-   validateCallback('foundSubsequence', foundSubsequence); // Count common items from the start in the forward direction.
 
-   const nCommonF = countCommonItemsF(0, aLength, 0, bLength, isCommon);
 
-   if (nCommonF !== 0) {
 
-     foundSubsequence(nCommonF, 0, 0);
 
-   } // Unless both sequences consist of common items only,
 
-   // find common items in the half-trimmed index intervals.
 
-   if (aLength !== nCommonF || bLength !== nCommonF) {
 
-     // Invariant: intervals do not have common items at the start.
 
-     // The start of an index interval is closed like array slice method.
 
-     const aStart = nCommonF;
 
-     const bStart = nCommonF; // Count common items from the end in the reverse direction.
 
-     const nCommonR = countCommonItemsR(
 
-       aStart,
 
-       aLength - 1,
 
-       bStart,
 
-       bLength - 1,
 
-       isCommon
 
-     ); // Invariant: intervals do not have common items at the end.
 
-     // The end of an index interval is open like array slice method.
 
-     const aEnd = aLength - nCommonR;
 
-     const bEnd = bLength - nCommonR; // Unless one sequence consists of common items only,
 
-     // therefore the other trimmed index interval consists of changes only,
 
-     // find common items in the trimmed index intervals.
 
-     const nCommonFR = nCommonF + nCommonR;
 
-     if (aLength !== nCommonFR && bLength !== nCommonFR) {
 
-       const nChange = 0; // number of change items is not yet known
 
-       const transposed = false; // call the original unwrapped functions
 
-       const callbacks = [
 
-         {
 
-           foundSubsequence,
 
-           isCommon
 
-         }
 
-       ]; // Indexes in sequence a of last points in furthest reaching paths
 
-       // from outside the start at top left in the forward direction:
 
-       const aIndexesF = [NOT_YET_SET]; // from the end at bottom right in the reverse direction:
 
-       const aIndexesR = [NOT_YET_SET]; // Initialize one object as output of all calls to divide function.
 
-       const division = {
 
-         aCommonFollowing: NOT_YET_SET,
 
-         aCommonPreceding: NOT_YET_SET,
 
-         aEndPreceding: NOT_YET_SET,
 
-         aStartFollowing: NOT_YET_SET,
 
-         bCommonFollowing: NOT_YET_SET,
 
-         bCommonPreceding: NOT_YET_SET,
 
-         bEndPreceding: NOT_YET_SET,
 
-         bStartFollowing: NOT_YET_SET,
 
-         nChangeFollowing: NOT_YET_SET,
 
-         nChangePreceding: NOT_YET_SET,
 
-         nCommonFollowing: NOT_YET_SET,
 
-         nCommonPreceding: NOT_YET_SET
 
-       }; // Find and return common subsequences in the trimmed index intervals.
 
-       findSubsequences(
 
-         nChange,
 
-         aStart,
 
-         aEnd,
 
-         bStart,
 
-         bEnd,
 
-         transposed,
 
-         callbacks,
 
-         aIndexesF,
 
-         aIndexesR,
 
-         division
 
-       );
 
-     }
 
-     if (nCommonR !== 0) {
 
-       foundSubsequence(nCommonR, aEnd, bEnd);
 
-     }
 
-   }
 
- }
 
 
  |