| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899 | 
							- /**
 
-  * @license Fraction.js v4.2.1 20/08/2023
 
-  * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
 
-  *
 
-  * Copyright (c) 2023, Robert Eisele (robert@raw.org)
 
-  * Dual licensed under the MIT or GPL Version 2 licenses.
 
-  **/
 
- /**
 
-  *
 
-  * This class offers the possibility to calculate fractions.
 
-  * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
 
-  *
 
-  * Array/Object form
 
-  * [ 0 => <numerator>, 1 => <denominator> ]
 
-  * [ n => <numerator>, d => <denominator> ]
 
-  *
 
-  * Integer form
 
-  * - Single integer value
 
-  *
 
-  * Double form
 
-  * - Single double value
 
-  *
 
-  * String form
 
-  * 123.456 - a simple double
 
-  * 123/456 - a string fraction
 
-  * 123.'456' - a double with repeating decimal places
 
-  * 123.(456) - synonym
 
-  * 123.45'6' - a double with repeating last place
 
-  * 123.45(6) - synonym
 
-  *
 
-  * Example:
 
-  *
 
-  * let f = new Fraction("9.4'31'");
 
-  * f.mul([-4, 3]).div(4.9);
 
-  *
 
-  */
 
- (function(root) {
 
-   "use strict";
 
-   // Set Identity function to downgrade BigInt to Number if needed
 
-   if (typeof BigInt === 'undefined') BigInt = function(n) { if (isNaN(n)) throw new Error(""); return n; };
 
-   const C_ONE = BigInt(1);
 
-   const C_ZERO = BigInt(0);
 
-   const C_TEN = BigInt(10);
 
-   const C_TWO = BigInt(2);
 
-   const C_FIVE = BigInt(5);
 
-   // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
 
-   // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
 
-   // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
 
-   const MAX_CYCLE_LEN = 2000;
 
-   // Parsed data to avoid calling "new" all the time
 
-   const P = {
 
-     "s": C_ONE,
 
-     "n": C_ZERO,
 
-     "d": C_ONE
 
-   };
 
-   function assign(n, s) {
 
-     try {
 
-       n = BigInt(n);
 
-     } catch (e) {
 
-       throw InvalidParameter();
 
-     }
 
-     return n * s;
 
-   }
 
-   // Creates a new Fraction internally without the need of the bulky constructor
 
-   function newFraction(n, d) {
 
-     if (d === C_ZERO) {
 
-       throw DivisionByZero();
 
-     }
 
-     const f = Object.create(Fraction.prototype);
 
-     f["s"] = n < C_ZERO ? -C_ONE : C_ONE;
 
-     n = n < C_ZERO ? -n : n;
 
-     const a = gcd(n, d);
 
-     f["n"] = n / a;
 
-     f["d"] = d / a;
 
-     return f;
 
-   }
 
-   function factorize(num) {
 
-     const factors = {};
 
-     let n = num;
 
-     let i = C_TWO;
 
-     let s = C_FIVE - C_ONE;
 
-     while (s <= n) {
 
-       while (n % i === C_ZERO) {
 
-         n/= i;
 
-         factors[i] = (factors[i] || C_ZERO) + C_ONE;
 
-       }
 
-       s+= C_ONE + C_TWO * i++;
 
-     }
 
-     if (n !== num) {
 
-       if (n > 1)
 
-         factors[n] = (factors[n] || C_ZERO) + C_ONE;
 
-     } else {
 
-       factors[num] = (factors[num] || C_ZERO) + C_ONE;
 
-     }
 
-     return factors;
 
-   }
 
-   const parse = function(p1, p2) {
 
-     let n = C_ZERO, d = C_ONE, s = C_ONE;
 
-     if (p1 === undefined || p1 === null) {
 
-       /* void */
 
-     } else if (p2 !== undefined) {
 
-       n = BigInt(p1);
 
-       d = BigInt(p2);
 
-       s = n * d;
 
-       if (n % C_ONE !== C_ZERO || d % C_ONE !== C_ZERO) {
 
-         throw NonIntegerParameter();
 
-       }
 
-     } else if (typeof p1 === "object") {
 
-       if ("d" in p1 && "n" in p1) {
 
-         n = BigInt(p1["n"]);
 
-         d = BigInt(p1["d"]);
 
-         if ("s" in p1)
 
-           n*= BigInt(p1["s"]);
 
-       } else if (0 in p1) {
 
-         n = BigInt(p1[0]);
 
-         if (1 in p1)
 
-           d = BigInt(p1[1]);
 
-       } else if (p1 instanceof BigInt) {
 
-         n = BigInt(p1);
 
-       } else {
 
-         throw InvalidParameter();
 
-       }
 
-       s = n * d;
 
-     } else if (typeof p1 === "bigint") {
 
-       n = p1;
 
-       s = p1;
 
-       d = C_ONE;
 
-     } else if (typeof p1 === "number") {
 
-       if (isNaN(p1)) {
 
-         throw InvalidParameter();
 
-       }
 
-       if (p1 < 0) {
 
-         s = -C_ONE;
 
-         p1 = -p1;
 
-       }
 
-       if (p1 % 1 === 0) {
 
-         n = BigInt(p1);
 
-       } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
 
-         let z = 1;
 
-         let A = 0, B = 1;
 
-         let C = 1, D = 1;
 
-         let N = 10000000;
 
-         if (p1 >= 1) {
 
-           z = 10 ** Math.floor(1 + Math.log10(p1));
 
-           p1/= z;
 
-         }
 
-         // Using Farey Sequences
 
-         while (B <= N && D <= N) {
 
-           let M = (A + C) / (B + D);
 
-           if (p1 === M) {
 
-             if (B + D <= N) {
 
-               n = A + C;
 
-               d = B + D;
 
-             } else if (D > B) {
 
-               n = C;
 
-               d = D;
 
-             } else {
 
-               n = A;
 
-               d = B;
 
-             }
 
-             break;
 
-           } else {
 
-             if (p1 > M) {
 
-               A+= C;
 
-               B+= D;
 
-             } else {
 
-               C+= A;
 
-               D+= B;
 
-             }
 
-             if (B > N) {
 
-               n = C;
 
-               d = D;
 
-             } else {
 
-               n = A;
 
-               d = B;
 
-             }
 
-           }
 
-         }
 
-         n = BigInt(n) * BigInt(z);
 
-         d = BigInt(d);
 
-       }
 
-     } else if (typeof p1 === "string") {
 
-       let ndx = 0;
 
-       let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE;
 
-       let match = p1.match(/\d+|./g);
 
-       if (match === null)
 
-         throw InvalidParameter();
 
-       if (match[ndx] === '-') {// Check for minus sign at the beginning
 
-         s = -C_ONE;
 
-         ndx++;
 
-       } else if (match[ndx] === '+') {// Check for plus sign at the beginning
 
-         ndx++;
 
-       }
 
-       if (match.length === ndx + 1) { // Check if it's just a simple number "1234"
 
-         w = assign(match[ndx++], s);
 
-       } else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number
 
-         if (match[ndx] !== '.') { // Handle 0.5 and .5
 
-           v = assign(match[ndx++], s);
 
-         }
 
-         ndx++;
 
-         // Check for decimal places
 
-         if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") {
 
-           w = assign(match[ndx], s);
 
-           y = C_TEN ** BigInt(match[ndx].length);
 
-           ndx++;
 
-         }
 
-         // Check for repeating places
 
-         if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") {
 
-           x = assign(match[ndx + 1], s);
 
-           z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE;
 
-           ndx+= 3;
 
-         }
 
-       } else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
 
-         w = assign(match[ndx], s);
 
-         y = assign(match[ndx + 2], C_ONE);
 
-         ndx+= 3;
 
-       } else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2"
 
-         v = assign(match[ndx], s);
 
-         w = assign(match[ndx + 2], s);
 
-         y = assign(match[ndx + 4], C_ONE);
 
-         ndx+= 5;
 
-       }
 
-       if (match.length <= ndx) { // Check for more tokens on the stack
 
-         d = y * z;
 
-         s = /* void */
 
-         n = x + d * v + z * w;
 
-       } else {
 
-         throw InvalidParameter();
 
-       }
 
-     } else {
 
-       throw InvalidParameter();
 
-     }
 
-     if (d === C_ZERO) {
 
-       throw DivisionByZero();
 
-     }
 
-     P["s"] = s < C_ZERO ? -C_ONE : C_ONE;
 
-     P["n"] = n < C_ZERO ? -n : n;
 
-     P["d"] = d < C_ZERO ? -d : d;
 
-   };
 
-   function modpow(b, e, m) {
 
-     let r = C_ONE;
 
-     for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) {
 
-       if (e & C_ONE) {
 
-         r = (r * b) % m;
 
-       }
 
-     }
 
-     return r;
 
-   }
 
-   function cycleLen(n, d) {
 
-     for (; d % C_TWO === C_ZERO;
 
-       d/= C_TWO) {
 
-     }
 
-     for (; d % C_FIVE === C_ZERO;
 
-       d/= C_FIVE) {
 
-     }
 
-     if (d === C_ONE) // Catch non-cyclic numbers
 
-       return C_ZERO;
 
-     // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
 
-     // 10^(d-1) % d == 1
 
-     // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
 
-     // as we want to translate the numbers to strings.
 
-     let rem = C_TEN % d;
 
-     let t = 1;
 
-     for (; rem !== C_ONE; t++) {
 
-       rem = rem * C_TEN % d;
 
-       if (t > MAX_CYCLE_LEN)
 
-         return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
 
-     }
 
-     return BigInt(t);
 
-   }
 
-   function cycleStart(n, d, len) {
 
-     let rem1 = C_ONE;
 
-     let rem2 = modpow(C_TEN, len, d);
 
-     for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
 
-       // Solve 10^s == 10^(s+t) (mod d)
 
-       if (rem1 === rem2)
 
-         return BigInt(t);
 
-       rem1 = rem1 * C_TEN % d;
 
-       rem2 = rem2 * C_TEN % d;
 
-     }
 
-     return 0;
 
-   }
 
-   function gcd(a, b) {
 
-     if (!a)
 
-       return b;
 
-     if (!b)
 
-       return a;
 
-     while (1) {
 
-       a%= b;
 
-       if (!a)
 
-         return b;
 
-       b%= a;
 
-       if (!b)
 
-         return a;
 
-     }
 
-   }
 
-   /**
 
-    * Module constructor
 
-    *
 
-    * @constructor
 
-    * @param {number|Fraction=} a
 
-    * @param {number=} b
 
-    */
 
-   function Fraction(a, b) {
 
-     parse(a, b);
 
-     if (this instanceof Fraction) {
 
-       a = gcd(P["d"], P["n"]); // Abuse a
 
-       this["s"] = P["s"];
 
-       this["n"] = P["n"] / a;
 
-       this["d"] = P["d"] / a;
 
-     } else {
 
-       return newFraction(P['s'] * P['n'], P['d']);
 
-     }
 
-   }
 
-   var DivisionByZero = function() {return new Error("Division by Zero");};
 
-   var InvalidParameter = function() {return new Error("Invalid argument");};
 
-   var NonIntegerParameter = function() {return new Error("Parameters must be integer");};
 
-   Fraction.prototype = {
 
-     "s": C_ONE,
 
-     "n": C_ZERO,
 
-     "d": C_ONE,
 
-     /**
 
-      * Calculates the absolute value
 
-      *
 
-      * Ex: new Fraction(-4).abs() => 4
 
-      **/
 
-     "abs": function() {
 
-       return newFraction(this["n"], this["d"]);
 
-     },
 
-     /**
 
-      * Inverts the sign of the current fraction
 
-      *
 
-      * Ex: new Fraction(-4).neg() => 4
 
-      **/
 
-     "neg": function() {
 
-       return newFraction(-this["s"] * this["n"], this["d"]);
 
-     },
 
-     /**
 
-      * Adds two rational numbers
 
-      *
 
-      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
 
-      **/
 
-     "add": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
 
-         this["d"] * P["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Subtracts two rational numbers
 
-      *
 
-      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
 
-      **/
 
-     "sub": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
 
-         this["d"] * P["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Multiplies two rational numbers
 
-      *
 
-      * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
 
-      **/
 
-     "mul": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * P["s"] * this["n"] * P["n"],
 
-         this["d"] * P["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Divides two rational numbers
 
-      *
 
-      * Ex: new Fraction("-17.(345)").inverse().div(3)
 
-      **/
 
-     "div": function(a, b) {
 
-       parse(a, b);
 
-       return newFraction(
 
-         this["s"] * P["s"] * this["n"] * P["d"],
 
-         this["d"] * P["n"]
 
-       );
 
-     },
 
-     /**
 
-      * Clones the actual object
 
-      *
 
-      * Ex: new Fraction("-17.(345)").clone()
 
-      **/
 
-     "clone": function() {
 
-       return newFraction(this['s'] * this['n'], this['d']);
 
-     },
 
-     /**
 
-      * Calculates the modulo of two rational numbers - a more precise fmod
 
-      *
 
-      * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
 
-      **/
 
-     "mod": function(a, b) {
 
-       if (a === undefined) {
 
-         return newFraction(this["s"] * this["n"] % this["d"], C_ONE);
 
-       }
 
-       parse(a, b);
 
-       if (0 === P["n"] && 0 === this["d"]) {
 
-         throw DivisionByZero();
 
-       }
 
-       /*
 
-        * First silly attempt, kinda slow
 
-        *
 
-        return that["sub"]({
 
-        "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
 
-        "d": num["d"],
 
-        "s": this["s"]
 
-        });*/
 
-       /*
 
-        * New attempt: a1 / b1 = a2 / b2 * q + r
 
-        * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
 
-        * => (b2 * a1 % a2 * b1) / (b1 * b2)
 
-        */
 
-       return newFraction(
 
-         this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
 
-         P["d"] * this["d"]
 
-       );
 
-     },
 
-     /**
 
-      * Calculates the fractional gcd of two rational numbers
 
-      *
 
-      * Ex: new Fraction(5,8).gcd(3,7) => 1/56
 
-      */
 
-     "gcd": function(a, b) {
 
-       parse(a, b);
 
-       // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
 
-       return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
 
-     },
 
-     /**
 
-      * Calculates the fractional lcm of two rational numbers
 
-      *
 
-      * Ex: new Fraction(5,8).lcm(3,7) => 15
 
-      */
 
-     "lcm": function(a, b) {
 
-       parse(a, b);
 
-       // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
 
-       if (P["n"] === C_ZERO && this["n"] === C_ZERO) {
 
-         return newFraction(C_ZERO, C_ONE);
 
-       }
 
-       return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
 
-     },
 
-     /**
 
-      * Gets the inverse of the fraction, means numerator and denominator are exchanged
 
-      *
 
-      * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
 
-      **/
 
-     "inverse": function() {
 
-       return newFraction(this["s"] * this["d"], this["n"]);
 
-     },
 
-     /**
 
-      * Calculates the fraction to some integer exponent
 
-      *
 
-      * Ex: new Fraction(-1,2).pow(-3) => -8
 
-      */
 
-     "pow": function(a, b) {
 
-       parse(a, b);
 
-       // Trivial case when exp is an integer
 
-       if (P['d'] === C_ONE) {
 
-         if (P['s'] < C_ZERO) {
 
-           return newFraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']);
 
-         } else {
 
-           return newFraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']);
 
-         }
 
-       }
 
-       // Negative roots become complex
 
-       //     (-a/b)^(c/d) = x
 
-       // <=> (-1)^(c/d) * (a/b)^(c/d) = x
 
-       // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x
 
-       // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x       # DeMoivre's formula
 
-       // From which follows that only for c=0 the root is non-complex
 
-       if (this['s'] < C_ZERO) return null;
 
-       // Now prime factor n and d
 
-       let N = factorize(this['n']);
 
-       let D = factorize(this['d']);
 
-       // Exponentiate and take root for n and d individually
 
-       let n = C_ONE;
 
-       let d = C_ONE;
 
-       for (let k in N) {
 
-         if (k === '1') continue;
 
-         if (k === '0') {
 
-           n = C_ZERO;
 
-           break;
 
-         }
 
-         N[k]*= P['n'];
 
-         if (N[k] % P['d'] === C_ZERO) {
 
-           N[k]/= P['d'];
 
-         } else return null;
 
-         n*= BigInt(k) ** N[k];
 
-       }
 
-       for (let k in D) {
 
-         if (k === '1') continue;
 
-         D[k]*= P['n'];
 
-         if (D[k] % P['d'] === C_ZERO) {
 
-           D[k]/= P['d'];
 
-         } else return null;
 
-         d*= BigInt(k) ** D[k];
 
-       }
 
-       if (P['s'] < C_ZERO) {
 
-         return newFraction(d, n);
 
-       }
 
-       return newFraction(n, d);
 
-     },
 
-     /**
 
-      * Check if two rational numbers are the same
 
-      *
 
-      * Ex: new Fraction(19.6).equals([98, 5]);
 
-      **/
 
-     "equals": function(a, b) {
 
-       parse(a, b);
 
-       return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
 
-     },
 
-     /**
 
-      * Check if two rational numbers are the same
 
-      *
 
-      * Ex: new Fraction(19.6).equals([98, 5]);
 
-      **/
 
-     "compare": function(a, b) {
 
-       parse(a, b);
 
-       let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
 
-       return (C_ZERO < t) - (t < C_ZERO);
 
-     },
 
-     /**
 
-      * Calculates the ceil of a rational number
 
-      *
 
-      * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
 
-      **/
 
-     "ceil": function(places) {
 
-       places = C_TEN ** BigInt(places || 0);
 
-       return newFraction(this["s"] * places * this["n"] / this["d"] +
 
-         (places * this["n"] % this["d"] > C_ZERO && this["s"] >= C_ZERO ? C_ONE : C_ZERO),
 
-         places);
 
-     },
 
-     /**
 
-      * Calculates the floor of a rational number
 
-      *
 
-      * Ex: new Fraction('4.(3)').floor() => (4 / 1)
 
-      **/
 
-     "floor": function(places) {
 
-       places = C_TEN ** BigInt(places || 0);
 
-       return newFraction(this["s"] * places * this["n"] / this["d"] -
 
-         (places * this["n"] % this["d"] > C_ZERO && this["s"] < C_ZERO ? C_ONE : C_ZERO),
 
-         places);
 
-     },
 
-     /**
 
-      * Rounds a rational numbers
 
-      *
 
-      * Ex: new Fraction('4.(3)').round() => (4 / 1)
 
-      **/
 
-     "round": function(places) {
 
-       places = C_TEN ** BigInt(places || 0);
 
-       /* Derivation:
 
-       s >= 0:
 
-         round(n / d) = trunc(n / d) + (n % d) / d >= 0.5 ? 1 : 0
 
-                      = trunc(n / d) + 2(n % d) >= d ? 1 : 0
 
-       s < 0:
 
-         round(n / d) =-trunc(n / d) - (n % d) / d > 0.5 ? 1 : 0
 
-                      =-trunc(n / d) - 2(n % d) > d ? 1 : 0
 
-       =>:
 
-       round(s * n / d) = s * trunc(n / d) + s * (C + 2(n % d) > d ? 1 : 0)
 
-           where C = s >= 0 ? 1 : 0, to fix the >= for the positve case.
 
-       */
 
-       return newFraction(this["s"] * places * this["n"] / this["d"] +
 
-         this["s"] * ((this["s"] >= C_ZERO ? C_ONE : C_ZERO) + C_TWO * (places * this["n"] % this["d"]) > this["d"] ? C_ONE : C_ZERO),
 
-         places);
 
-     },
 
-     /**
 
-      * Check if two rational numbers are divisible
 
-      *
 
-      * Ex: new Fraction(19.6).divisible(1.5);
 
-      */
 
-     "divisible": function(a, b) {
 
-       parse(a, b);
 
-       return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
 
-     },
 
-     /**
 
-      * Returns a decimal representation of the fraction
 
-      *
 
-      * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
 
-      **/
 
-     'valueOf': function() {
 
-       // Best we can do so far
 
-       return Number(this["s"] * this["n"]) / Number(this["d"]);
 
-     },
 
-     /**
 
-      * Creates a string representation of a fraction with all digits
 
-      *
 
-      * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
 
-      **/
 
-     'toString': function(dec) {
 
-       let N = this["n"];
 
-       let D = this["d"];
 
-       function trunc(x) {
 
-           return typeof x === 'bigint' ? x : Math.floor(x);
 
-       }
 
-       dec = dec || 15; // 15 = decimal places when no repetition
 
-       let cycLen = cycleLen(N, D); // Cycle length
 
-       let cycOff = cycleStart(N, D, cycLen); // Cycle start
 
-       let str = this['s'] < C_ZERO ? "-" : "";
 
-       // Append integer part
 
-       str+= trunc(N / D);
 
-       N%= D;
 
-       N*= C_TEN;
 
-       if (N)
 
-         str+= ".";
 
-       if (cycLen) {
 
-         for (let i = cycOff; i--;) {
 
-           str+= trunc(N / D);
 
-           N%= D;
 
-           N*= C_TEN;
 
-         }
 
-         str+= "(";
 
-         for (let i = cycLen; i--;) {
 
-           str+= trunc(N / D);
 
-           N%= D;
 
-           N*= C_TEN;
 
-         }
 
-         str+= ")";
 
-       } else {
 
-         for (let i = dec; N && i--;) {
 
-           str+= trunc(N / D);
 
-           N%= D;
 
-           N*= C_TEN;
 
-         }
 
-       }
 
-       return str;
 
-     },
 
-     /**
 
-      * Returns a string-fraction representation of a Fraction object
 
-      *
 
-      * Ex: new Fraction("1.'3'").toFraction() => "4 1/3"
 
-      **/
 
-     'toFraction': function(excludeWhole) {
 
-       let n = this["n"];
 
-       let d = this["d"];
 
-       let str = this['s'] < C_ZERO ? "-" : "";
 
-       if (d === C_ONE) {
 
-         str+= n;
 
-       } else {
 
-         let whole = n / d;
 
-         if (excludeWhole && whole > C_ZERO) {
 
-           str+= whole;
 
-           str+= " ";
 
-           n%= d;
 
-         }
 
-         str+= n;
 
-         str+= '/';
 
-         str+= d;
 
-       }
 
-       return str;
 
-     },
 
-     /**
 
-      * Returns a latex representation of a Fraction object
 
-      *
 
-      * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
 
-      **/
 
-     'toLatex': function(excludeWhole) {
 
-       let n = this["n"];
 
-       let d = this["d"];
 
-       let str = this['s'] < C_ZERO ? "-" : "";
 
-       if (d === C_ONE) {
 
-         str+= n;
 
-       } else {
 
-         let whole = n / d;
 
-         if (excludeWhole && whole > C_ZERO) {
 
-           str+= whole;
 
-           n%= d;
 
-         }
 
-         str+= "\\frac{";
 
-         str+= n;
 
-         str+= '}{';
 
-         str+= d;
 
-         str+= '}';
 
-       }
 
-       return str;
 
-     },
 
-     /**
 
-      * Returns an array of continued fraction elements
 
-      *
 
-      * Ex: new Fraction("7/8").toContinued() => [0,1,7]
 
-      */
 
-     'toContinued': function() {
 
-       let a = this['n'];
 
-       let b = this['d'];
 
-       let res = [];
 
-       do {
 
-         res.push(a / b);
 
-         let t = a % b;
 
-         a = b;
 
-         b = t;
 
-       } while (a !== C_ONE);
 
-       return res;
 
-     },
 
-     "simplify": function(eps) {
 
-       eps = eps || 0.001;
 
-       const thisABS = this['abs']();
 
-       const cont = thisABS['toContinued']();
 
-       for (let i = 1; i < cont.length; i++) {
 
-         let s = newFraction(cont[i - 1], C_ONE);
 
-         for (let k = i - 2; k >= 0; k--) {
 
-           s = s['inverse']()['add'](cont[k]);
 
-         }
 
-         if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
 
-           return s['mul'](this['s']);
 
-         }
 
-       }
 
-       return this;
 
-     }
 
-   };
 
-   if (typeof define === "function" && define["amd"]) {
 
-     define([], function() {
 
-       return Fraction;
 
-     });
 
-   } else if (typeof exports === "object") {
 
-     Object.defineProperty(exports, "__esModule", { 'value': true });
 
-     Fraction['default'] = Fraction;
 
-     Fraction['Fraction'] = Fraction;
 
-     module['exports'] = Fraction;
 
-   } else {
 
-     root['Fraction'] = Fraction;
 
-   }
 
- })(this);
 
 
  |